Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Wei Wang, ${ }^{\text {a* }}$ Tao Chen, ${ }^{\text {b }}$ Hong-Xiang Sun, ${ }^{c}$ Yi Xiong, ${ }^{a}$ Chang-Xin Zhou ${ }^{\text {a }}$ and Yu Zhao ${ }^{\text {a }}$
${ }^{\text {a D Department }}$ of Traditional Chinese Medicine and Natural Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310031, People's Republic of China, ${ }^{\mathbf{b}}$ The First People's Hospital of Hangzhou, Hangzhou 310022, People's Republic of China, and ${ }^{\text {c }}$ College of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China
Correspondence e-mail:
wangliwei78@hotmail.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.083$
$w R$ factor $=0.196$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Kadsuranin: a lignan from the fruit of Schisandra chinensis

The title compound, kadsuranin or 5,6,7,8-tetrahydro-1,2,3,13-tetramethoxy-6,7-dimethylbenzo[3,4]cycloocta[1,2-f][1,3]benzodioxole, $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$, is a dibenzocyclooctadiene-type lignan which was isolated from a Chinese medicine, Schisandra chinensis (the fruit of Schisandra chinensis Baill.). The molecule contains two six-membered aromatic rings, one fivemembered ring, and an eight-membered ring with a twisted-boat-chair conformation.

Comment

Schisandra chinensis is a rich source of dibenzocyclooctadiene lignans, and it has been found to possess some beneficial pharmacological effects, including antihepatitis, antitumour and anti-HIV activities (Hancke et al., 1999; Liu \& Li, 1995). To find more about its bioactive constituents, we have investigated the fruit of Schisandra chinensis, which led to the isolation of the title compound, kadsuranin, (I). This is the first time this compound has been isolated from the genus Schisandra. The structure of (I) was elucidated by spectroscopic methods and confirmed by single-crystal X-ray diffraction analysis.

(I)

Compound (I) was obtained as colourless prisms. A view of the molecule of (I) with the atom-numbering scheme is shown in Fig. 1 and selected bond parameters are listed in Table 1. The molecule contains two six-membered rings, one fivemembered ring and one eight-membered ring.

Experimental

Dried powder (4.5 kg) of the fruit of Schisandra chinensis was extracted three times with $95 \% \mathrm{EtOH}$ at room temperature. The solvent was removed by evaporation at reduced pressure, and the residue was successively fractioned with petroleum ether, EtOAc and $n-\mathrm{BuOH}$. The residue of the petroleum ether fraction was subjected to column chromatography on silica gel. The column was eluted with a petroleum ether-EtOAc mixture. The crude compound was purified by column chromatography on silica gel with an acetonechloroform mixture and recrystallized with petroleum ether and

Received 14 January 2004

Accepted 1 March 2004 Online 13 March 2004

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.

EtOAc (2:1) to afford 2.201 g of the pure title compound, (I) (m.p. 392-394 K). Crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of an aqueous solution in petroleum ether and EtOAc (2:1) at room temperature. Spectroscopic analysis: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m): 151.6 (C3), 151.5 (C1), 148.6 (C12), 141.0 (C14), 140.0 (C2), 137.8 (C10), 134.5 (C13), 134.1 (C5), 123.2 (C16), 110.6 (C4), 102.9 (C11), 100.7 (C19), 61.0 (C22), 60.5 (C23), 59.6 (C20), 55.8 (C21), 40.6 (C8), 39.1 (C6), 35.5 (C9), 33.4 (C7), 21.5 (C18), 12.8 (C17).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \\
& M_{r}=400.45 \\
& \text { Triclinic, } P_{\overline{1}} \\
& a=10.5346(7) \AA \\
& b=10.9409(7) \AA \\
& c=11.0568(7) \AA \\
& \alpha=83.315(2)^{\circ} \\
& \beta=70.256(3)^{\circ} \\
& \gamma=63.245(2)^{\circ} \\
& V=1070.09(12) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.243 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 642 reflections
$\theta=2.4-22.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Prism, colourless
$0.45 \times 0.18 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.963, T_{\text {max }}=0.984$
5758 measured reflections

3801 independent reflections
2443 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-9 \rightarrow 12$
$k=-12 \rightarrow 13$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0794 P)^{2}\right. \\
& \quad+0.2635 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.196$
$S=1.10$
3801 reflections
268 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C1	1.363 (4)	O4-C21	1.416 (4)
O1-C20	1.426 (5)	O5-C13	1.382 (4)
$\mathrm{O} 2-\mathrm{C} 2$	1.388 (5)	O5-C22	1.408 (5)
O2-C19	1.431 (6)	O6-C14	1.380 (4)
O3-C3	1.393 (5)	O6-C23	1.411 (4)
O3-C19	1.430 (7)	C1-C16	1.419 (5)
O4-C12	1.372 (4)	C15-C16	1.493 (4)
C1-O1-C20	117.9 (3)	C4-C3-O3	126.8 (5)
C2-O2-C19	104.0 (4)	C2-C3-O3	110.3 (5)
C3-O3-C19	103.3 (4)	C11-C12-O4	125.2 (3)
C12-O4-C21	117.2 (3)	C14-C13-O5	119.6 (3)
C13-O5-C22	114.5 (3)	O5-C13-C12	121.3 (3)
C14-O6-C23	114.3 (3)	O6-C14-C13	119.2 (3)
C2-C1-O1	123.6 (4)	O6-C14-C15	119.3 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	129.7 (5)	$\mathrm{O} 3-\mathrm{C} 19-\mathrm{O} 2$	107.1 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	108.9 (4)		

After their location in a difference Fourier map, all H atoms were geometrically positioned and allowed to ride on their attached atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Hancke, J. L., Burgos, R. A. \& Ahumada, F. (1999). Fitoterapia, 70, 451-471. Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS
(Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, J. S. \& Li, L. (1995). Phytochemistry, 38, 241-245.

