Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Wei Wang,^a* Tao Chen,^b Hong-Xiang Sun,^c Yi Xiong,^a Chang-Xin Zhou^a and Yu Zhao^a*

^aDepartment of Traditional Chinese Medicine and Natural Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310031, People's Republic of China, ^bThe First People's Hospital of Hangzhou, Hangzhou 310022, People's Republic of China, and ^cCollege of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China

Correspondence e-mail: wangliwei78@hotmail.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.006 Å R factor = 0.083 wR factor = 0.196 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Kadsuranin: a lignan from the fruit of Schisandra chinensis

The title compound, kadsuranin or 5,6,7,8-tetrahydro-1,2,3,13tetramethoxy-6,7-dimethylbenzo[3,4]cycloocta[1,2-f][1,3]benzodioxole, C₂₃H₂₈O₆, is a dibenzocyclooctadiene-type lignan which was isolated from a Chinese medicine, *Schisandra chinensis* (the fruit of *Schisandra chinensis* Baill.). The molecule contains two six-membered aromatic rings, one fivemembered ring, and an eight-membered ring with a twistedboat–chair conformation.

Comment

Schisandra chinensis is a rich source of dibenzocyclooctadiene lignans, and it has been found to possess some beneficial pharmacological effects, including antihepatitis, antitumour and anti-HIV activities (Hancke *et al.*, 1999; Liu & Li, 1995). To find more about its bioactive constituents, we have investigated the fruit of *Schisandra chinensis*, which led to the isolation of the title compound, kadsuranin, (I). This is the first time this compound has been isolated from the genus *Schisandra*. The structure of (I) was elucidated by spectroscopic methods and confirmed by single-crystal X-ray diffraction analysis.

Compound (I) was obtained as colourless prisms. A view of the molecule of (I) with the atom-numbering scheme is shown in Fig. 1 and selected bond parameters are listed in Table 1. The molecule contains two six-membered rings, one fivemembered ring and one eight-membered ring.

Experimental

Dried powder (4.5 kg) of the fruit of *Schisandra chinensis* was extracted three times with 95% EtOH at room temperature. The solvent was removed by evaporation at reduced pressure, and the residue was successively fractioned with petroleum ether, EtOAc and *n*-BuOH. The residue of the petroleum ether fraction was subjected to column chromatography on silica gel. The column was eluted with a petroleum ether–EtOAc mixture. The crude compound was purified by column chromatography on silica gel with an acetone–chloroform mixture and recrystallized with petroleum ether and

Received 14 January 2004 Accepted 1 March 2004 Online 13 March 2004

Figure 1

A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.

EtOAc (2:1) to afford 2.201 g of the pure title compound, (I) (m.p. 392–394 K). Crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of an aqueous solution in petroleum ether and EtOAc (2:1) at room temperature. Spectroscopic analysis: ¹³C NMR (100 MHz, CDCl₃, δ , p.p.m): 151.6 (C3), 151.5 (C1), 148.6 (C12), 141.0 (C14), 140.0 (C2), 137.8 (C10), 134.5 (C13), 134.1 (C5), 123.2 (C16), 110.6 (C4), 102.9 (C11), 100.7 (C19), 61.0 (C22), 60.5 (C23), 59.6 (C20), 55.8 (C21), 40.6 (C8), 39.1 (C6), 35.5 (C9), 33.4 (C7), 21.5 (C18), 12.8 (C17).

Crystal data

$C_{23}H_{28}O_6$	<i>Z</i> = 2
$M_r = 400.45$	$D_x = 1.243 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.5346 (7) Å	Cell parameters from 642
b = 10.9409 (7) Å	reflections
c = 11.0568 (7) Å	$\theta = 2.4-22.0^{\circ}$
$\alpha = 83.315 \ (2)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 70.256 \ (3)^{\circ}$	T = 273 (2) K
$\gamma = 63.245 \ (2)^{\circ}$	Prism, colourless
$V = 1070.09 (12) \text{ Å}^3$	$0.45 \times 0.18 \times 0.11 \text{ mm}$

Data collection

3801 independent reflections
2443 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\rm max} = 25.2^{\circ}$
$h = -9 \rightarrow 12$
$k = -12 \rightarrow 13$
$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0794P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.083$	+ 0.2635P]
$vR(F^2) = 0.196$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
801 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
68 parameters	$\Delta \rho_{\rm min} = -0.20 \mathrm{e} \mathrm{\AA}^{-3}$
I-atom parameters constrained	

Table 1

Selected g	geometric	parameters ((A,	°)	1.
------------	-----------	--------------	-----	----	----

O1-C1	1.363 (4)	O4-C21	1.416 (4)
O1-C20	1.426 (5)	O5-C13	1.382 (4)
O2-C2	1.388 (5)	O5-C22	1.408 (5)
O2-C19	1.431 (6)	O6-C14	1.380 (4)
O3-C3	1.393 (5)	O6-C23	1.411 (4)
O3-C19	1.430 (7)	C1-C16	1.419 (5)
O4-C12	1.372 (4)	C15-C16	1.493 (4)
C1-O1-C20	117.9 (3)	C4-C3-O3	126.8 (5)
C2-O2-C19	104.0 (4)	C2-C3-O3	110.3 (5)
C3-O3-C19	103.3 (4)	C11-C12-O4	125.2 (3)
C12-O4-C21	117.2 (3)	C14-C13-O5	119.6 (3)
C13-O5-C22	114.5 (3)	O5-C13-C12	121.3 (3)
C14-O6-C23	114.3 (3)	O6-C14-C13	119.2 (3)
C2-C1-O1	123.6 (4)	O6-C14-C15	119.3 (3)
C1-C2-O2	129.7 (5)	O3-C19-O2	107.1 (4)
C3-C2-O2	108.9 (4)		

After their location in a difference Fourier map, all H atoms were geometrically positioned and allowed to ride on their attached atoms, with C-H distances in the range 0.93–0.98 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Hancke, J. L., Burgos, R. A. & Ahumada, F. (1999). Fitoterapia, 70, 451–471. Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, J. S. & Li, L. (1995). Phytochemistry, 38, 241-245.